HPLC-Based Mass Spectrometry Characterizes the Phospholipid Alterations in Ether-Linked Lipid Deficiency Models Following Oxidative Stress
نویسندگان
چکیده
Despite the fact that the discovery of ether-linked phospholipids occurred nearly a century ago, many unanswered questions remain concerning these unique lipids. Here, we characterize the ether-linked lipids of the nematode with HPLC-MS/MS and find that more than half of the phosphoethanolamine-containing lipids are ether-linked, a distribution similar to that found in mammalian membranes. To explore the biological role of ether lipids in vivo, we target fatty acyl-CoA reductase (fard-1), an essential enzyme in ether lipid synthesis, with two distinct RNAi strategies. First, when fard-1 RNAi is initiated at the start of development, the treated animals have severely reduced ether lipid abundance, resulting in a shift in the phosphatidylethanolamine lipid population to include more saturated fatty acid chains. Thus, the absence of ether lipids during development drives a significant remodeling of the membrane landscape. A later initiation of fard-1 RNAi in adulthood results in a dramatic reduction of new ether lipid synthesis as quantified with 15N-tracers; however, there is only a slight decrease in total ether lipid abundance with this adult-only fard-1 RNAi. The two RNAi strategies permit the examination of synthesis and ether lipid abundance to reveal a relationship between the amount of ether lipids and stress survival. We tested whether these species function as sacrificial antioxidants by directly examining the phospholipid population with HPLC-MS/MS after oxidative stress treatment. While there are significant changes in other phospholipids, including polyunsaturated fatty acid-containing species, we did not find any change in ether-linked lipids, suggesting that the role of ether lipids in stress resistance is not through their general consumption as free radical sinks. Our work shows that the nematode will be a useful model for future interrogation of ether lipid biosynthesis and the characterization of phospholipid changes in various stress conditions.
منابع مشابه
Identification of Proteins Adducted by Lipid Peroxidation Products in Plasma and Modifications of Apolipoprotein A1 with a Novel Biotinylated Phospholipid Probe
Reactive electrophiles generated by lipid peroxidation are thought to contribute to cardiovascular disease and other oxidative stress-related pathologies by covalently modifying proteins and affecting critical protein functions. The difficulty of capturing and analyzing the relatively small fraction of modified proteins complicates identification of the protein targets of lipid electrophiles. W...
متن کاملShotgun Lipidomics Identifies a Paired Rule for the Presence of Isomeric Ether Phospholipid Molecular Species
BACKGROUND Ether phospholipids are abundant membrane constituents present in electrically active tissues (e.g., heart and the brain) that play important roles in cellular function. Alterations of ether phospholipid molecular species contents are associated with a number of genetic disorders and human diseases. METHODOLOGY/PRINCIPAL FINDINGS Herein, the power of shotgun lipidomics, in combinat...
متن کاملStructural characterization of oxidized phospholipid products derived from arachidonate-containing plasmenyl glycerophosphocholine.
Plasmenyl phospholipids are a structurally unique class of lipids that contain a vinyl ether substituent at the sn-1 position of the glycerol backbone, imparting unique susceptibility to oxidative reactions that may take place at the cell membrane lipid bilayer. Several studies have supported the hypothesis that plasmalogens may be antioxidant molecules that protect cells from oxidative stress....
متن کاملEarly lipid changes in acute kidney injury using SWATH lipidomics coupled with MALDI tissue imaging.
Acute kidney injury (AKI) is one of the leading causes of in-hospital morbidity and mortality, particularly in critically ill patients. Although our understanding of AKI at the molecular level remains limited due to its complex pathophysiology, recent advances in both quantitative and spatial mass spectrometric approaches offer new opportunities to assess the significance of renal metabolomic c...
متن کاملIdentification of atypical ether-linked glycerophospholipid species in macrophages by mass spectrometry.
A large scale profiling and analysis of glycerophospholipid species in macrophages has facilitated the identification of several rare and atypical glycerophospholipid species. By using liquid chromatography tandem mass spectrometry and comparison of the elution and fragmentation properties of the rare lipids to synthetic standards, we were able to identify an array of ether-linked phosphatidyli...
متن کامل